
lcrs-embedded
Release 1.0dev

Benjamin Bach

Jul 07, 2018





Contents

1 Large-scale Computer Reuse Suite (LCRS) 3

i



ii



lcrs-embedded, Release 1.0dev

This is the documentation of the embedded part of Large-scale Computer Reuse Suite, a.k.a. LCRS.

Contents 1

https://lcrs.fairdanmark.dk


lcrs-embedded, Release 1.0dev

2 Contents



CHAPTER 1

Large-scale Computer Reuse Suite (LCRS)

This is the embedded component of LCRS, a Linux kernel with an embedded server written in Python, using HTTP.

You can read more about LCRS in the main repo:

https://github.com/fairdk/lcrs

. . . and on our website:

https://lcrs.fairdanmark.dk Software for computer refurbishment workshops: Wipe disks, test hardware, store results
in database.

• Free software: GNU General Public License v3

• Documentation: https://lcrs-embedded.readthedocs.io.

1.1 Contents

1.1.1 Installation

The embedded LCRS command line is available from within the built images that are booted by clients booted from
the LCRS PXE server or from ISO images.

You may invoke it as a classic python library, but it serves no purpose on a regular system unless you want to wipe its
hard drive.

To simulate usage, refer to the tests.

When installing within the embedded system, Buildroot is used. For installing it within this environment, a script is
called invoking normal python setup procedure pip install -e . or python setup.py install, how-
ever it’s also combined with installation of a relocatable virtualenv.

The concept is this:

mkdir -p buildroot/linked_buildroot/output/target/usr/bin
pip install . -t buildroot/linked_buildroot/output/target/usr/lib/python3.5/site-
→˓packages/ --install-option="--install-scripts=buildroot/linked_buildroot/output/
→˓target/usr/bin" --upgrade

(continues on next page)

3

https://github.com/fairdk/lcrs
https://lcrs.fairdanmark.dk
http://codecov.io/github/fairdk/lcrs-embedded?branch=master
https://travis-ci.org/fairdk/lcrs-embedded
https://lcrs-embedded.readthedocs.io


lcrs-embedded, Release 1.0dev

(continued from previous page)

1.1.2 Developer guide

For an overview, refer to the Makefile and various entrypoints. This section contains guides to developing environ-
ments etc.

Contents:

Getting started

In order to build a kernel, you need to download Buildroot. You also need these dependencies:

sudo apt-get install build-essential ncurses-base ncurses-bin libncurses5-dev dialog
→˓gcc-multilib g++ g++-multilib

Make sure to have the Buildroot manual at hand!

Copy the .config file from the Git repo into the location where you have unpacked Buildroot, then run the ncurses
configuration program:

make nconfig

Buildroot configuration

In order to mess with the buildroot stuff and create new images containing the LCRS CLI, you need some build root
skills.

The main entry point is the Makefile which will run scripts that prompt you for typical questions to get bootstrapped.

This is an documentation of the various choices made regarding the Buildroot configuration.

Make sure to have the Buildroot manual at hand!

Copying the .config-dist file should happen by running the Make target, if you have a buildroot environment at
hand, run this to see the configuration:

make nconfig

Buildroot settings

• Root password: unset, meaning there’s no password for the root user.

• Default DHCP device: eth0

Buildroot features

Before setting up the environment, consider that it takes quite a lot of storage space (~6 GB), so you might wanna put
it on a different drive.

Furthermore, after building, you cannot relocate. You would have to rebuild. This is a well-known issue in Buildroot.

Toolchain:

4 Chapter 1. Large-scale Computer Reuse Suite (LCRS)

https://buildroot.org
https://buildroot.org/downloads/manual/manual.html#_getting_started
https://buildroot.org/downloads/manual/manual.html#_getting_started


lcrs-embedded, Release 1.0dev

Remember if you change the configuration of the toolchain, you need to rebuild everything with make clean.

• Wchar

• C++ support (because of smartmontools)

The following is compiled into the distributed Buildroot

System configuration:

• /dev management with mdev

• Network interface for DHCP: eth0

Packages

• bz2

• dt

• fio

• ramspeed

• stress

• cpio

• squashfs w/ gzip

• Linux binary firmware for all Ethernet

• dmidecode

• fan-ctrl

• hwdata

• kdb (keyboard tables)

• lm-sensors

• memtester

• pciutils (lspci)

• sdparm

• sg3utils w/ programs

• smartmontools

• sysstat

• wipe

• python3

– All internal modules enabled

– python-socketio

Libraries Hardware handling - lbusb

Networking -

Other - mcrypt

Text and terminal handling - libiconv - ncurses w/ wide-char (utf-8 handling) + ncurses programs - newt

Network applications:

1.1. Contents 5



lcrs-embedded, Release 1.0dev

• dhcpcd

• dhcpdump

• dropbear

• ethtool

• iputils

• macchanger

• netplug

• ntp

Shell utilities:

• None

System tools:

• cpuload

• htop

• keyutils

Text editors:

• nano

Maybe?

• ramspeed/smp

• stress-ng

Filesystem images

• ext2 root file system

• initial RAM filesystem linked into linux kernel

• iso image (isolinux)

• squashfs root

Bootloaders

• syslinux w/ isolinux + pxelinux

Test-driven development (TDD)

This program is written with TDD in mind.

The most sensitive parts of the suite of commands that are run are guided by a philosophy that all functions should
guarantee their intended outcomes, but still have to rely on their respective system calls.

6 Chapter 1. Large-scale Computer Reuse Suite (LCRS)

https://en.wikipedia.org/wiki/Test-driven_development


lcrs-embedded, Release 1.0dev

Warning: If something doesn’t work, fail loudly. Throw exceptions, go mad.

Test philosophy

#. Define data structures, the main object to refer to is lcrs_embedded.models.ScanResult

API reference

lcrs_embedded

1.1.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/fairdk/lcrs-embedded/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

Large-scale Computer Reuse Suite (LCRS) could always use more documentation, whether as part of the official
Large-scale Computer Reuse Suite (LCRS) docs, in docstrings, or even on the web in blog posts, articles, and such.

1.1. Contents 7

https://github.com/fairdk/lcrs-embedded/issues


lcrs-embedded, Release 1.0dev

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fairdk/lcrs-embedded/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up lcrs-embedded for local development.

1. Fork the lcrs-embedded repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/lcrs-embedded.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv lcrs-embedded
$ cd lcrs-embedded/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 lcrs-embedded tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

8 Chapter 1. Large-scale Computer Reuse Suite (LCRS)

https://github.com/fairdk/lcrs-embedded/issues


lcrs-embedded, Release 1.0dev

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
fairdk/lcrs-embedded/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_lcrs-embedded

1.1.4 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning

[Unreleased]

Added

• Example entry #1 @benjaoming

Changed

• Start using “changelog” over “change log” since it’s the common usage.

Removed

• Section about “changelog” vs “CHANGELOG”.

1.1. Contents 9

https://travis-ci.org/fairdk/lcrs-embedded/pull_requests
https://travis-ci.org/fairdk/lcrs-embedded/pull_requests
http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html
https://github.com/fairdk/lcrs-embedded/issues/1

	Large-scale Computer Reuse Suite (LCRS)

